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Abstract 

The main term of the probability distribution of a triple 
product in an arbitrary space group is derived via the 
central limit theorem. The results are in general 
identical to those obtained by Giacovazzo [Direct 
Methods in Crystallography (1980), p. 286. London: 
Academic Press], i.e. in any space group the well 
known distribution functions for P1 and P1 are valid 
for general triple products and triple products with 
restricted phase angles, respectively, provided a suit- 
able weight is applied. However, in the eleven pairs of 
enantiomorphously related space groups it is found that 
there are triple products for which the most probable 
phase angle assumes a value different from zero. As an 
example, in P4~ the most probable phase for the triple 
product E221 E~o I E2~, given its magnitude, appears to 
be - 4 5  ° . 

Introduction 

The effect of space-group symmetry on the probability 
distribution of triplet invariants was described by 
Giacovazzo (1974a,b, 1980). Via the characteristic 
function he derived the joint probability distribution of 
three normalized structure factors Eh,, Eh and Eh, 
(hi + h2 + h3 = 0), expressed in terms of multivariate 
cumulants and Hermite polynomials. In the derivation 
hi, h2 and h a were fixed, while the atomic coordinates 
were regarded as the primitive random variables. After 
expanding the cumulants in terms of joint moments of 
the trigonometric parts of the contributing structure 
factors he used the linearization theory (Bertaut, 
1959a,b) to obtain an analytical expression for the 
desired distribution function. Because of the relation 
between the variance of the distribution and the mean 
value of the trigonometric part of the triple product, his 
result can only be correct if the latter quantity is real 
valued. Therefore, his formulae are not applicable in 
those cases where the triple product must have a 
non-real component as a consequence of space-group 
symmetry. [For example, in P2~212 ~ the triple product 
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E h E h E h ,  w h e r e  h 1 = ( g 0 u ) ,  h 2 ---- (Ogu) a n d  h 3 = ' 

In this paper the distribution function of a triple 
product in an arbitrary space group is redetermined. 
We will calculate the main term of this distribution via 
the central limit theorem applied directly to the product 
of any three normalized structure factors. As we aim at 
an expression for triple products containing structure 
factors of an arbitrary class, we will define a general 
expression for the normalized structure factor E h which 
can be used both for a centrosymmetric and a 
non-centrosymmetric arrangement of atoms. From this 
an explicit expression for the real and imaginary parts 
(A and B) of the triple product is derived. 

Application of the central limit theorem then leads 
directly to a two-dimensional normal distribution of A 
and B if the triple product is of a general type, or to a 
one-dimensional normal distribution if the phase of the 
triple product is restricted to two possible values. 

A generalized structure-factor expression 

Amplitudes of normalized structure factors can be 
obtained from an observed data set using 

/[ph N (h)] IEh 12= IF~ bsl2 Z fi2 , 
=1 

(1) 

where F~ 'bs is a structure factor on an absolute scale, N 
is the number of atoms in the unit cell, Ph is the 
statistical weight of Eh, and f~(h) is the scattering factor 
of the ith atom, temperature factor included. The 
statistical weight takes into account the fact that in 
most space groups the average intensity for certain 
classes of reflexions is expected to be larger than 
E,~, f?(h). 

The normalized structure factor can be written as 

N 

Eh =p~-l/2 O21/2 ~ Zi exp(2mb, ri), (2) 
1=1 
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where 

N 

as= Z Z~ 
t=1 

and Z~ is the atomic number of atom i. In a space group 
of order m there are n = N / m  independent atoms in the 
unit cell so, following Bertaut & Waser (1957) and 
excluding systematically absent reflexions, 

n m/Ph 
Eh=p~,/2aT~/2 Y Zi  Y exp[27ffh.(Rjr i + tj)], (3) 

i=1 j = l  

where Rj is a 3 × 3 matrix for the proper or improper 
rotational component of the j th  symmetry operation, tj 
is a three-dimensional vector describing the trans- 
lational component of the j t h  symmetry operation, m is 
the total number of symmetry operations, a possible 
inversion included. 

If Eh corresponds to a centrosymmetric arrange- 
ment of atoms, (3) reduces to a sum over m/2Ph cosine 
terms. This can lead to an expression for a triple 
product in which both cosine and exponential functions 
are present. To avoid this we proceed in the following 
way: if Eh corresponds to a centrosymmetric structure, 
one of the m/ph symmetry operations, to be identified 
with label h, will be of such a form that hRh = --h so 
the hth term in the summation over the symmetry 
elements can be combined with the one arising from the 
identity operation: 

{exp(2mh. r~) + exp[2rd( -h ,  r i + h. th)] }. (4) 

As the set of ralph symmetry operations forms a 
mathematical group, the following reasoning holds: 

if (Rh, th) and (R~,t~) are members of the group, then 
(Rs, ts) also belongs to the group i f R  s = RhRq and t s = 
th + t~. So, if hR h = --h, then hRh R~ = hR s = --hRq. 

This means that all exponential terms in (3) are two 
by two related in the same way as described in (4). 
Because t~ = th + t~ the phase difference between the 
two terms is always equal to 27rh. th. 

If we now define the parameter Jh so that Jh = 0 ifEh 
is a general structure factor and Jh = 1 if Eh 
corresponds to a centrosymmetric arrangement of 
atoms, then the general expression for the normalized 
structure factor becomes 

n mh 
fh = p~-I/2 0.21/2 Z Z Gi, j(h), (5) 

i=lj=l 

where m h = m/(Ph 2 sh) and 

Gi.j(h) = Zi{exp[2zrih. (Rjr i + tj)] + Jh exp[2zcih, t h] 

x exp[--21tih. (Rj r i + tj)] }. 

From this it follows that if Jh = 1 the phase of the 
structure factor is restricted to two possible values: 
(nh. th) or (z~h. th + ~). 

Algebraic and probabilistie deserlptlon of the product 
Eh I Eh2 Eh3 

From (5) it follows that 

E h  t E h  2 Eh  3 : (Ph ,  Ph 2 Ph3 )1/2 623/2 

× ~ ~] Gi~,A(hl) Gi2,A(h2) Gi3,J3(h3), 
il... 13 Jl...J3 

where 

(6) 

~ ~. means ~ ~ ~. mh, mh~ mh' Y . Y . Z .  
tp.'i3 Jl'"J3 t1=1 /2 =1 /3 =1 Jl =1 J2 =1 .]3 =1 

Define 

3 

T?1,72,73 ~ ~. 
k=l  

3 

R ? 1 , ? 2 , ? 3  =-- 
k=l  

3 

D?1 ,72 , ?3  = ~. 
k=l  

and write 

then 

?k hk. t A 

?k hk" RA ri~ 

?k hk" thk 

Y~, ?2,73 are integers, (7) 

E h  I Eh2Eh  3 = Ahlh2h3 + iBhl h2h 3, 

Ah, h2hs ~-" (Ph, Ph2Ph3)I/2 a23/2 Z Z Zi, Zi2Zi3 
ii...i3 A.. 43 

x {cos2~(T111 + RII~) 

+ Jh, Jh2 ~, COS 21t(D~z I + Tiii + Rii i) 

+ Jh, COS 2~t(D1o o + Th~ + Rill) 

+ ~h2 COS 2zr(Dol o + Tlh + Rill) 

+ Jh, cos 2zr(Doo ~ + T~ i + R11i) 

+ ~h, ~ cos 27r(Dll 0 + Tih  + R i b )  

+ 6h, 6h3 COS 2zt(D~01 + Tix I + R i f  t )  

+ Jh 6h COS 2z~(D011 + Tlii  + R l i i ) } .  (8) 

The expression for Bh, h,h, is analogous to (8), with the 
cosines replaced by sines. 

Now let h i, h z and h 3 be fixed vectors in reciprocal 
space and let the atomic coordinates assume all 
possible values, then, after defining 

A'  ht h2 h3 ~ A hi h2 h3 - -  ( h h ,  112 h 3 > p.r.v.'s 

and 

/~lh2h3 ~nhlh2h3 - -  <Bhlh2h3 > p.r.v.'s, (9) 
where the p.r.v.'s are the primitive random variables 
(i.e. the atomic coordinates), both A~. h2h3 and B~, h~h3 can 
be regarded as a sum over a 'large number of 
independent random variables. From (8) it can be seen 
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that each random variable is a sum over eight 
trigonometric functions (eight cosines for A~,,h2h~ and 
eight sines for B~,,h,h ) .  

Application of the central limit theorem (see Appen- 
dix 1) now leads directly to the conclusion that the joint 
probability distribution of A' and B'  will be a normal 
distribution: 

= B r2 P(A ' ,B ' )  (2n) -1 U -v2 exp[-½U-l(u22 A'2 + ull 

-- 2Ul2A' B')],  (10) 

where u~,  Uzz and u12 are the elements of the 
covariance matrix U of which U is the determinant. 

For the calculations of the mean values we refer to 
Appendices II and III. The final results are 

( A )  p.r.v.'s = (ph, Ph2Ph3) 1/2 m -10"3 0"2 3/2 

× { ~ '  [COS 27t(Vlll) 

+ 6hl (~h2 6h3 COS 27~(DII l + Tiii)] 
(I) 

+ E [f~h! COS 27t(Dlo o + T~II) 

+ 6h2 6h3 COS 2n(Dol I + T l i i ) ]  
(2) 

+ ~ [~h~ COS 2n(Dol o + Tlh)  

(n) 
where Y means 

+ 6hi 6h3 COS 2n(Dlo I + Th0] 
(3) 

+ ~. [6h3 COS 2n(Doo I + Till) 

+ 6hi 6h2 COS 27c(D110 + Tih)] ) , (11) 

mh t mh 3 mh~ 
Z Y Y  
J, J2 J3 

with 

3 
(--1)*'..hiRi~ = O, 

1=1 

where 6~., is the Kronecker delta. 
The expression for ( B )  is analogous to (11), with the 

cosines replaced by sines. 

1 --3 
U 11 = ~Ph, Ph 2 Ph 3 0"2 mht mh 2 mh 3 

× E E E  Z~ Z2Z?t2 ,3 {1 + ¢~h 61~ 6h3 q" ~h ~n2 
i~ t2 t3 

+ 6hi 6h3 "4- ~h2 6h3 -+- f~hl -t- f~h2 + f~h3 

"1- 8~h, 6h2 6h3 COS 27~D111}. (12) 

Define g as the number of structure factors in the triple 
product having a restricted phase (i.e./u = 6h, + 6h2 + 
3h3) then 

1 Ull = ½ + ~3u, 3 COS 27rDll  I. (13) 

Using the same definitions we get 

U22 --  ½- -  1 ( 14 )  -- ~t~,,3 cos 2nDll I 

and 
1 u12 = u21 = ~6~,3 sin 2 7 g D l l  1. (15) 

In (12)-(15) terms of order N -1 were neglected. 
From (13), (14) and (15) the value of the deter- 

minant is 
1 u = ¼ - ( 1 6 )  

It may be noted that the various contributions to ( A)  
and ( B )  are obtained by rotating the reciprocal vectors 
according to the symmetry operations of the space 
group and taking into account all combinations for 
which hlR:. + h2Rj2 + h3R h = 0. This set of 
symmetry-re]ated triple products is usually referred to 
as the first representation of the invariant phase 
combination (~0h + ~0h2 + ~0h3)" From (11) it follows that 
it is essential to ' t ake  the complete first representation 
into account, which is in agreement with the results of 
the representation theory of Giacovazzo (1977). 

G e n e r a l  triple p r o d u c t s  

If at least one of the structure factors participating in 
the triple product is of a non-centrosymmetric nature 
(i.e. g 4: 3), the covariance matrix of A' and B'  becomes 
diagonal with U = ¼ and Ull = u22 ---~½. 

From (9) and (10) we find 

P(A,B)  = n -1 exp[-A 2 -  B E + 2 A ( A )  + 2 B ( B )  

-- ( A ) 2 - -  (B)2], (17) 

where ( A )  and ( B )  are defined in (11). Put A = 
R cos q~, B = R sin q~ and 

( A )  + i ( B ) = e 3 e 2 3 / Z Q e x p ( i q ) ,  (18) 

then (17) gives 

P ( R , ~ )  = n -1R e x p ( - R  1) exp[20. 3 o23/2 RQ 

x cos(q~ - q)] (19) 

and 

P(q~lR) = (2x) -1 Ioi(203 ez3/ZRQ) exp[20. 3 ez3/ZRQ 

x cos(q~ - q)], (20) 

where Io(x ) is the modified Bessel function of order 0. 
This type of distribution is usually referred to as a 
circular normal distribution or a v o n  Mises distri- 
bution (Heinerman, Krabbendam & Kroon, 1977). The 
mode of (20) is at q~ = q and the argument of the Bessel 
function is a measure of its sharpness. 
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Triple products with restricted phase angles 

If p = 3, then U = 0 (see 16), so the two-dimensional 
normal distribution (10) can no longer be applied. In 
these cases all three structure factors in the triple 
product have restricted phases. Clearly then the phase 
~h I~ of the triple product is also restricted to two 
possible values: 

SO 

l~hlh2-~ n(hl.th, + h2.th2 + h3.th) + nh, h2 n 

(r/h, h2 ---- 0 or 1), 

¢~h, h2 = 7~Dll 1 or ~h,h~ = ~(Dl11 + I). (21) 

This means that A' and B' are linearly related via 

B' = tan(nDln)A' ,  

and therefore P(A',B')is not defined. 
Instead of treating their real and imaginary part, 

these triple products should preferably be described in 
terms of their amplitude and their direction along the 
axis on which they are restricted. To avoid cumber- 
some notation, we postpone this transformation. The 
probability distribution will first be derived in terms of 
A and B, after which the transformation is straight- 
forward. 

Because 
(3O 

P ( A ' ) =  _f P(A',B')dB', (22) 
--CO 

the desired one-dimensional distribution can be deter- 
mined from (10). It appears that 

P(A') = (2nu11) -1/2 exp(-½u# A'2), (23) 

which is independent of the determinant of the 
covariance matrix. If the variance of A' happens to be 
equal to zero, 

lim [P(A')] = 6(A',O), (24) 
UlI--*0 

where 6(A',0) is the Dirac delta function. The same 
procedure can be used to derive P(B') and to show 

lirn [P(B ' ) ]  = 6(B',0). (25) 
U22 --t. 0 

Depending on the value of D1~ ~, both P(A') and 
P(B') are given by (23) or one of them is a delta 
function. If P(A') is not a delta function the prob- 
ability distribution of the real part of the triple product 
follows from (9) and (23).* 

P(A) = (27fUl l )  -1/2 exp[--½u]-:(A 2 -  2A(A) + (A)2)]. 

(26) 

* If ull = 0 the following derivation is not correct. However, in 
these cases the same results are obtained via P(B'). 

Because Jh, = Jh~ = 6 h  3 = 1, (11) can be written as 

<A) = 2(Ph, Ph2P%) 1/2 0" 3 0"2 3/2 W cos (nD~l l) m -1, (27) 

where 

(0) (1) 

W =  ~ cos n(Dii  I + 7'222) + ~ cos n(Dli  i + T~22) 

(2) 

+ ~ cos n (Dh i  + T2~2) 

(3) 

+ ~ cos n(Dih  + T22i). 

By the transformation 

A = R cos(TrDll I + nh, h2 n), (28) 

where R is the amplitude of the triple product and 
nh, h2 = 0 or 1, and because 

u~-~ cos2(rdg111)= 1, (29) 

the following distribution function is obtained: 

P ( n h t  h2,R ) : C exp[--½R 2 + R(ph, Ph2Ph3 )1/2 

X 0" 3 0"23/2 m - 1  l, V 2  COS(/'/hlh27~)], ( 3 0 )  

where C is a suitable normalizing constant. 
From (30) the probability that the phase of the triple 

product is rdgl~ ~ (i.e. nh, h~ = 0), given the amplitude R, 
is easily calculated: 

P(l~hth 2 = ~ 111) = ½ -t- I tanh[ 2(Ph, Ph2P%) 1/2 
X m -1  (7 3 0"2 3/2 W R ] .  (31) 

Discussion and conclusions 

The results in this paper, as formulated in (20) and 
(31), clearly show that space-group symmetry 
influences the main term of the conditional probability 
distribution of the phase of a triple product. 

From (20) it is seen that in any space group the 
phase of a general triple product can be described by a 
von Mises distribution. Equation (18) shows that if 
(B)  = 0 then (20) becomes analogous to the 
well-known distribution function for P1. Under this 
condition our results are in agreement with 
Giacovazzo's conclusion (Giacovazzo, 1980) that the 
distribution function for P1 can be used in any 
non-centrosymmetric space group provided a suitable 
weight is applied. If (B)  = 0 the mean value of the 
trigonometric part of the triple product in Giacovazzo's 
formulae can be replaced by (A),  after which it can be 
shown that in these cases the weight he applies is 
identical to our parameter Q. 

Triple products with restricted phase angles are 
described by (31) which gives the probability that the 
phase q~h, h2 is equal to one of the two possible values. 
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If the space group is centrosymmetric this formula 
can be simplified by choosing the conventional setting 
with the origin of the unit cell at the inversion centre, by 
which all D functions become equal to zero. Therefore. 
in centrosymmetric space groups the parameter W as 
defined in (27) can always be calculated t'ia 

(o) (1) 
IV = _\ cos 2rc(T~) + _x- cos 2rc(T~1~) 

(2) (3) 
N" cos 2zr(T~) + x- cos 2n(Tl~). + 
m 

In P1. for example, the following parameters are valid 
for all triple products: 

PH,=PH.=Ph,= 1 and m h , = m h . = m h : = l  

so W =  1. 

which leads to the formula of Cochran & Woolfson 
(1955). Restricted triple products in non-centro- 
symmetric space groups, however, can only be 
described by (31). A well-known example of this type 
occurs in space group P2~2~21. where a triple product 
can be constructed from three structure factors in the 
parity groups (gOu). (Ogu) and (ggO). so q~h,h, is 
restricted to _+re/2 by space-group symmetry. Because 
W = 0 for this type of invariant (as is shown in 
Appendix IV). the probability that q~,h. = n/2 is 
exactly equal to the probability that q~h, h. = ---n/2. 

The fact that there is no phase inform~ition about this 
triple product could have been expected because a 
preference for one of the two possible phases would 
implicitly mean a choice for one of the possible 
enantiomorphic solutions. The mere knowledge of three 
structure-factor amplitudes without any information 
about Bijvoet differences is of course insufficient for 
this kind of conclusion. These arguments are more 
generally applicable: because the von Mises distri- 
bution for general triple products (equation 20) is 
unimodal between 0 and 2n, it is not possible to find 
phase indications different from 0 or n as long as we 
have not specified which of the two enantiomorphic 
solutions we want to describe. 

Therefore. it is not surprising that our results are in 
agreement in most cases with Giacovazzo's con- 
clusions because the fixation of an enantiomorph in 
normal direct-methods procedures occurs after the 
determination of the probability distributions. How- 
ever. there are situations in which phase indications are 
obtained that differ from 0: in the eleven pairs of 
enantiomorphously related space groups the enantio- 
morph is fixed by the choice of one of the two possible 
space groups, so there is in principle no objection 
against enantiomorph-dependent phase indications. For 
example, in P41 the triple product E221E~o1E2i i is 
expected to have a phase o f - 4 5  ° because (A)  = 
+0" 3 0"2 3/2 and (B)  = -0"3 0"2 3/2, a s  can be seen from 

Appendix V. In space group P43 the most probable 
phase of the same invariant is +45 ° because now 
( B ) =  +0"30'23/2. 

An interesting consequence of this probabilistic 
result in chiral space groups is the possibility of 
indicating the most probable space group, without 
determining the structure. For this purpose it is 
sufficient to consider triple products, the most probable 
phases of which differ from zero or n according to (20). 
Following Heinerman, Krabbendam, Kroon & Spek 
(1978), the phases of these triple products can be 
estimated from the measured Bijvoet differences, 
without knowing the positions of the anomalous 
scatterers. Only one of the two possible space-group- 
dependent theoretical distribution functions will match 
the experimental one, thus indicating the space group. 
Once the space group has been specified in this way, 
the absolute configuration of the compound is com- 
pletely fixed by the measured intensities even in the 
absence of anomalous scattering (ignoring the possi- 
bility of 'homometric' solutions). The subsequent 
determination of the structure in the indicated space 
group will therefore directly lead to the corresponding 
absolute configuration of the compound. 

It should be noted that the latter procedure is of a 
statistical nature and only gives the most probable 
enantiomorph, even if the phases could be determined 
without error. In such an ideal situation the use of the 
so-called identities (Kroon, Pontenagel, Krabbendam 
& Peerdeman, 1982) would give an absolute answer. 
For practical purposes, however, the statistical solution 
seems the most favourable. 

We thank Drs J. Kroon and J. J. L. Heinerman and 
Professors A. F. Peerdeman and C. Giacovazzo for 
stimulating discussions. 

A P P E N D I X  I 
The central limit theorem for complex vectors 

Let T be a complex vector defined by 

T =  A + iB, (I.1) 

and let A and B be sums over a large number of 
independent random contributions, i.e. 

A = Z a  i, B = ~ b  i 
i i 

and (aiaj)  p.r.v.'s = 0 ]  for 
i j, (I.2) 

oJ and (b i bj) p.r.v.'s = 

where the p.r.v.'s are the primitive random variables of 
the problem in which the ai's and bi's are expressed. 
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If, in addition, (A> = 0 and (B> = 0, application of 
the central limit theorem leads to a two-dimensional 
normal distribution for A and B: 

= B 2 P ( A , B )  (2zr) - l  U -u2 exp[--½U-l(u22 A2 + Ull 

-- 2uI2AB)] ,  (I.3) 

where 

u , , = Z < a ~ > ,  u22=Z(b~>,  u I 2 = E < a i b i >  (I.4) 
i i i 

and 

U ~ Ul l  u22 - -  U22 . 

In addition there are 28 terms of the type 

(cos 27r(Do, + T,, + R,,,) cos 27r(D~ + T,~ + Ro~) ) 

= ½[(cos 27~(D +.~ + T.,,+.,~ + R.,,+..,)> 

+ (cos 2~(D,,_,,, + T, ,_ ,2  + R,.,,_~)>]. (II.4) 

Order n a contributions, necessary to compensate for 
the 0(N -3) factor C, are only possible if il 4:i2 4= i 3 [see 
case (a) of Appendix III]. This is the case if in R,.,,+~ 
or R., the symbols w I + o02 or w I - o h stand for I - -  ¢O2 
(0,0,0), so R,.,, +,.,2 = 0 or R,.,,_,o2 = 0 (and, as it appears, 
T.,+., = 0 or 7".,_., = 0). Out of the 56 terms of this 
type only four fulfil the above conditions; their total 
contribution to the average is 

APPENDIX II 
Calculation of (A>, (B>,//11' U22 and UI2 

From (8) we obtain 

<A> = C E Z Zi, Zi2Zi3[< cOs 27~(T1l, + R I l l )>  
i1""13 Jl"'J3 

4- (~h (~h2 ~h3<COS 2/~(Dl l  ' 4- Ti~i + RH0 > 

+ ...l ,  (II. 1) 

where C is a constant of order N -3/2. Each of the 
individual averages gives rise to a contribution of order 
N -1/2 to (A> if i I = i 2 = i3, provided Jl, J2, J3 assume 
values for which 71 hl R j, + 72 h2Rj2 + Y3 ha R j  3 = 0, as 
described in case (c) of Appendix III. The result is 
easily obtained and is given in (11). 

(B> can be calculated in the same way after 
replacing all cosines by sines• From Appendix I, using 
(8), it follows that the variance of A' (i.e. Ull) is 

Ull = C Z E* Z'211 Z'212 Z~3 { (c°s2 27t(Ti I '  + Ri l l )> 
t 1 " ' "  13 J l ' "  ".]3 

+ 2~h, ~h 2 ~h3<COS 2re(Till 4- Ril  l) 

x cos 2n(Dll I + T[ii + R[[i)> + 2 ~  ~ 

x (cos 2zr(Tll 1 + Rill)  

X COS 2:n:(Dol 1 + TI[ [ + Rl~[) ) + . . .  }, (II.2) 

where C is a constant of order N -3. 
This expression contains eight quadratic terms of the 

type cos2(x); since cos2(x) = ½ + ½ cos(2x), each term 
of this kind gives rise to a constant contribution; the 
total contribution of the quadratic terms to the average 
is 

½C Z Z~Z2"Z2"(  i 3 4-&l~h2~h34-&,&24-&,&3 
ia... t 3 

4- ~h2&34- ~h, 4- ~h24- &3)" (II.3) 

* If im= i 2 -- i 3 all terms for which h~ R j, + h 2 Ry, + h a R j, = 0 are 
omitted. 

C Z Z 4t~h, ~h 2 ~h 3 COS 2ZaDll '. (II.5) 
11 ' '*  t3 Jl...J3 

The final expression for U ll is given by (12). 
u22 and Ul2 can be calculated along the same lines. 

The results are given in (14) and (15). 

APPENDIX III 
Order of the contributions to the mean values 

In all expressions concerned the terms are of the form 

C Z Z Z~, Z q Ze(cos 2ze(T + D + R~,o,2~,)>r,,,r~,r,? i2 t3 
tp"13 Jp"J3 

(III.1) 

in which 

Ry, ya3 = Yl hi .Rj,  ri, + Y2 h2 "R A ri 2 + 73 h3 . R  A r6 

and C is a constant of order ( N  -3/2) and q = 1 in the 
expressions for (A > and (B>, while C is of order (N -3) 
and q -- 2 in the expressions for the elements of the 
covariance matrix. 

If we assume that the number of atoms in the 
asymmetric unit is large compared to the number of 
symmetry operations (n >> mh mh m~), then the 

• 1 2 
following three cases must be explored: 

(a) i x =/: i 2 4= i a (order  n a contributions) .  (cos 2zr(T + 
D + R)) 4= 0 if simultaneously 71hlRj, = 0 and 
Y2 h2Rj .  2 = 0 and Y3 h3R~j3 = 0. . Excluding triplets in 
which h i = 0 (i = 1, 2, 3), we obtain 71 = 72 = 73 = 0 for 
order n 3 contributions• These are the important 
contributions to the elements of the covariance matrix, 
as the 0(n 3) contributions compensate for the 0(N -3) 
constant in the expressions. 

(b) i I = i 2 =/= i 3 (order  n 2 contributions) .  (cos 2zc(T + 
D + R)) ~ 0 if simultaneously Y3 h3 R j3. = 0 (i.e. Y3 = 0) 
and Yl ha R ,  + Y2 hE RJ 2 = 0;  this case is not relevant to 
the calcula{~on of (A > and (B>, where 73 is not equal to 
zero, and can be neglected compared to the 0(n 3) 
contributions in the calculation of the elements of the 
covariance matrix. 
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(C) i I = i 2 = i a (order n contributions). (cos 2n(T + 
D + R ) )  :/: 0 if yl h lR: ,  + Y2h2Rj2 + y3 haRj3 = 0. This 
case is essential in the calculation of  ( A )  and ( B ) .  
Example :  if y~ = --1 and Y2 = Ya = 1 then the expression 
is 

(i) 
C ~ Z 3 ~ c o s 2 z c ( T + D )  

t=1 

with 

(1) mh~ mh~ mh 3 

Y = Y Y E ,  
Jl .]2.]3 

where Jx, J 2 ,  J3 are restricted to those values for which 
- h  1RJI + h2Rj2 + h 3 R j3 = O. 

A P P E N D I X  IV 
Example of  the calculations for a special triple product 

in P212121 

Consider  the triple product  Ehl Eh2 Eh3 , where 

h I = (2,0,1), h 2 = (0,4, i) ,  h a = (2,4,0). 

In Table 1 all symmetry-re la ted  structure factors  of  
interest are collected together with their phase shifts, 
which can be calculated f rom the equivalent positions 
as given in International Tables for X-ray Crystallog- 
raphy (1969) 

(x,y,z), (½--x,--y, ½+ z), (½+ x, ½--y,--z), 

(--x, ½ + y, ½- z). 

F r o m  Table 1 we obtain:  

Ph, = Ph 2 = Ph 3 = 1. 

Because h I R 4 = ( - -h i ) :  t~hl = 1 ; h 1 . t h = ½; mhi = 2 (nos. 
1 and 3); because hER a = (--h2): ~ = 1; h2.tn: = 0; 
mh, = 2 (nos. 1 and 2); because h a R 2 = ( - h 3 ) :  t ~  = 1; 
ha. tn~ = 0; mh = 2 (nos. 1 and 3). 

With 3 these paramete rs  (27) can be used to calculate 
the following contributions to W: 

(0) 
Y type:  cos n(--½ + 0) 

because h l R  1 + hER ~ + haR ~ = 0 

cos n ( -½  + 1) 

because h~R~ + h2R 2 + h3R 3 = 0; 

(1) 
Y type: no contributions;  

(2) 
Y type: cos n(--½ + 0) 

because h~R a - h2R l + h3R a - 0 

cos n(--½--  1) 

because hxR 3 - h2R 2 + haR ~ = 0; 

(3) 
X type: no contributions.  

Therefore,  for this triple product  W = 0, so (31) 
leads to 

= ½n)= ½. 

A P P E N D I X  V 
Example of  the calculations for a special triple product 

in P4 l 

Consider  the triple product  Ehi Eh2 Eh3 , where 

h 1 = (2,2,1); h 2 = (4,0,1); h 3 = (2,:2,:2). 

According  to International Tables for X-ray 
Crystallography (1969) the equivalent positions are: 

(x,y,z); ( :c , ) ,  ½ + z); ~ ,  x, z + ¼); (y, :~, z - ¼). 

Table 2 gives symmetry-re la ted  structure factors  with 
their phase shifts. 

As  

P h i = P h , = P h a = l  and 6 h l = 6 ~ = 6 h , = 0 ,  

(1 1) gives the following contributions to ( A ) :  

Table 1. Symmetry-related structure factors and phase 
shifts in P212121 

Symmetry 
operation h, = (2,0,1) h 2 = (0,4,i) h 3 = (2,4,0) 

hRt (2,0,1) (0,4,i) (2,4,0) 
(1) h. t, (0) (0)  (0) 

hR 2 (2,0,1) (0.4,1) (2,4,0) 
(2) h.t2 (~ (~) (0) 

hR 3 (2,0,i) (0,4,1) (2,4,0) 
(3) h.t3 (0) (0) (0) 

hR, (2,0, [) (0,4,1) (2,4,0) 
(4) h.t, (9 (9 (0) 

Table 2. Symmetry-related structure factors and phase 
shifts in P41 

Symmetry 
operation h I = (2,2,1) h 2 = (4,0,1) h 3 = (2,9-,2) 

hR, (2,2,1) (4,0,1) (2,2,2) 
(1) h. t, (0) (0) (0) 

hR2 (2,2,1) (4,0,1) (2,2,2) 
(2) h.t2 (~_) (½) (0) 

hR~ (2,2,1) (0,4,1) (2,2,7_) 
(3) h. h _(~) (~) (~ 

hR4 (2,2,1) (0,4,1) (2,2,2) 
(4) h.t4 (]) (]) (0 
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(o) 
Y type: cos 2n(0  + 0 + 0) 

because h~ R a + h 2 R ~ + h 3 R ~ = 0 

cos 2zc( 5 + ½ + O) 

because h l R  2 + h2R 2 + haR2 = 0 

cos 2n(¼ + ¼ + 5) 

b e c a u s e  h l R  3 + h2R 3 + h3R 3 = 0 

cos 2 n ( ]  + ~] + ½) 

because haR 4 + h 2R 4 + h 3R4 = 0 

cos 2n(0  + ~ + 0) 

because h~R~ + hER 4 + h3R 2 = 0 

cos 2n(  5 + ¼ + 0) 

because h~R 2 + h z R  3 + h3Rt = 0 

cos 2n(¼ + 0 + 5) 

because h~ R a + h2 R ~ + b 3 R4 = 0 

cos 2 n ( ]  + 5 + 5) 

because h~R 4 + h2R2 + h3R3 = 0. 

Therefore, ( A ) =  0" 3 0"2 3/2 4-~(4 + 0 ) =  O" 3 0.2 3/2. 
For  the calculation of  ( B )  the same contributions 

can be used with the cosines replaced by sines, so 

( B )  = 0" 3 0.23,2 4-1(0  _ 4) = -0"3 e f  3/2. 

F rom (18) and (20) the most  probable phase for this 
triple product  in P4~ appears  to be 

q =  a r c t a n [ ( B ) / ( A ) ]  = - 4 5  ° 
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Potential* 
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Abstract  

The structures of  two crystalline phases of biphenyl 
(Ct2Hl0) were modeled using an exp-6-1 nonbonded 
potential and (1 - cos 2 (0) terms for the phenyl -phenyl  
conjugation energy. Preliminary calculations were 
made by minimizing the energy of a model starting 
from the 110 K structure,  space group P2t /a ,  with 
planar  molecules. Doubling the b axis and relaxing all 
symmetry  caused the model to t ransform to a struc- 
ture with twisted molecules, space group Pa, es- 
sentially the same as the approximate  structure 

* Research sponsored by the Division of Materials Sciences. 
Office of Basic Energy Sciences. US Department of Energy. ttndcr 
contract W-7405-eng-26 with the Union Carbide Corporation. 

reported from neutron diffraction studies at 2 2 - K .  
Increasing the contribution of the conjugation energy 
reversed the t ransformat ion,  and calculations show that 
the potential that produces planar  molecules in the 
crystal predicts twisted molecules in the gas phase, in 
agreement with experiment. A new temperature-de- 
pendent potential is described in which the nonbonded 
terms are modified according to the thermal motions of 
the atoms involved. Motion parallel to the interaction 
vector tends to push atoms apart ,  whereas motion 
perpendicular to it permits their mean positions to get 
closer together. Ways  of  combining the motions of the 
two atoms involved are considered. This new potential 
was applied to biphenyl to calculate successfully the 
observed unit-cell volumes and tlaermal expansion. The 
model reproduces the torsion angles in the 22 K 
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